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RESUMO

Desde de 2020 a população mundial vem enfrentando a pandemia de COVID-19,

doença infecciosa causada pela Síndrome Respiratória Aguda Grave do

Coronavírus-2 (SARS-CoV-2), que, até o momento, causou mais de 6,6 milhões de

vítimas. O SARS-CoV-2 possui genoma de RNA, o que o torna mais propenso a

mutações que um vírus de DNA, fato observável pelo surgimento de diferentes

variantes. Tais mutações podem implicar no aumento da afinidade do vírus com o

receptor ACE2, melhorar a suscetibilidade à infecção, impactar no diagnóstico e, não

só reduzir a eficácia de tratamentos como também reduzir a neutralização por

anticorpos. Além disso, características do hospedeiro, como fatores de risco e

genéticos, também podem afetar a suscetibilidade e desenvolvimento da doença, e

como a ACE2 possui interação direta com a proteína S, polimorfismos presentes

nessa podem estar associados com a suscetibilidade ao SARS-CoV-2. Entretanto,

como essas mutações e polimorfismos, encontrados em diferentes populações,

contribuem para melhorar a estabilidade e afinidade de interação entre o complexo

SARS-CoV-2-ACE2 não é totalmente compreendido. Métodos comumente usados

para compreender este processo, como Dinâmicas Moleculares, geram grandes

quantidades de dados, consequentemente interpretar e extrair informações desses

métodos não é um processo simples. Métodos de aprendizado de máquinas são

usados em análises de grande quantidade de dados, pois reduzem a

dimensionalidade do problema, assim, auxiliam na identificação de diferenças

significantes entre as trajetórias resultantes de dinâmicas moleculares. Portanto,

propôs-se usar os classificadores Multilayer Perceptron e Random Forest a fim de

identificar regiões ou resíduos críticos na interação entre variantes do vírus e

hospedeiro que possam impactar significativamente a funcionalidade das proteínas

ACE2 do hospedeiro e Spike do SARS-CoV-2. Ainda que estes classificadores

sofreram overfitting, esses foram capazes de identificar pares contendo resíduos

chaves na interação entre proteínas. Contudo, é necessário um melhor ajuste dos

parâmetros e avaliação estrutural dos pares identificados.

Palavras-chave: COVID-19. Bioinformática estrutural. Simulações moleculares.



ABSTRACT

Since 2020, the world's population has been facing the COVID-19 pandemic, an

infectious desease caused by Severe Acute Respiratory Syndrome coronavirus-2

(SARS-CoV-2), which, to the present day, caused more than 6,6 million victims. The

SARS-CoV-2 has a RNA genome, which makes it more prone to mutations than a

DNA virus, notable by the different variants that emerged. Such mutations may lead

to an increase of binding affinity of the virus and its receptor ACE2, improving

infection susceptibility, impact diagnosis, and not only reduce the effectiveness of

treatments but also reduce the antibody neutralization. Futhermore, host

characteristics, like risk and genetic factors, may also affect susceptibility and the

desease development, and as ACE2 has a direct interaction with the S protein,

polymorphisms in this protein may be associated with SARS-CoV-2 susceptibility.

However, how this mutation and polymorphisms, found in different populations,

contribute to improve stability and affinity between the complex SARS-CoV-2-ACE2

is not fully understood. Methods commonly used to understand this process, for

exemple Molecular Dinamics, generate large amounts of data, consequently

interpreting and extracting information from these methods is not a simple process.

Machine learning methods are used in analyzes of big data, because it reduces the

dimensionality of the problem, thus, it helps to identify significant differences between

the trajectories resulting from molecular dynamics. Therefore, it was proposed the

use of the classifiers Multilayer Perceptron and Random Forest in order to identify

critical regions or residues between virus and host variants that could significantly

impact the functionality of the host ACE2 and Spike of SARS-CoV-2 proteins.

Although these classifiers were overfitted, these were able to identify pairs containing

key residues in the interaction between proteins. However, a better adjustment of the

parameters and structural evaluation of the identified pairs is necessary.

Keywords: COVID-19. Structural bioinformatics. Molecular simulations.
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1. INTRODUÇÃO

1.1. COVID-19

Em 11 de março de 2020, a Organização Mundial da Saúde (OMS)

caracterizou como pandemia a COVID-19 (WHO DIRECTOR GENERAL’S

SPEECHES, 2020), doença infecciosa causada pela Síndrome Respiratória Aguda

Grave do Coronavírus-2 (do inglês Severe Acute Respiratory Syndrome

coronavirus-2 - SARS-CoV-2). Até o presente momento, novembro de 2022, já foram

confirmados mais de 630 milhões de casos confirmados, incluindo mais de 6,6

milhões de mortes globalmente. Só no Brasil, são mais de 35 milhões de casos com

quase 690 mil mortes (WORLD HEALTH ORGANIZATION, 2022).

A COVID-19 é uma doença respiratória, transmitida pelas células epiteliais do

pulmão por meio de aerossóis, que pode acarretar desde uma pneumonia viral leve

até Síndrome do Desconforto Respiratório Agudo (SDRA), e em casos ainda mais

graves levando a falência múltipla dos órgãos (CHOUDHARY et al., 2020).

1.2. SARS-CoV-2

SARS-CoV-2 pertence a família de Coronaviridae (CoVs), que são divididos

em quatro gêneros: alfas-CoVs, beta-CoVs, gamma-CoVs e delta-CoVs. Desses, o

SARS-CoV-2 pertence ao gênero beta-CoVs, que assim como os alfas-CoVs, em

sua grande maioria, originam-se em morcegos e infectam outros mamíferos. Fazem

parte também desse gênero os altamente patogênicos coronavírus humanos

Síndrome Respiratória Aguda Grave do Coronavírus (do inglês Severe Acute

Respiratory Syndrome coronavirus - SARS-CoV) e Síndrome respiratória do Oriente

Médio (do inglês Middle East Respiratory Syndrome - MERS), com taxas de

letalidade de 10.9% e 34.3%, respectivamente (SINGH et al., 2021).

Sendo um vírus de RNA de fita simples, de sentido positivo, o SARS-CoV-2

possui um genoma de aproximadamente 30 mil nucleotídeos, que codifica duas

grandes poliproteínas (pp1a e pp1ab) que são clivadas em 16 proteínas não

estruturais (NSPs), essenciais para síntese de RNA viral, e outras funções. Além

disso, codifica quatro proteínas estruturais, as quais são Spike(S), Envelope(E),

Membrana(M) e proteínas do nucleocapsídeo(N), necessárias para entrada e
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montagem do vírus. E nove proteínas acessórias que devem atuar na neutralização

da imunidade do hospedeiro durante a infecção (PENG et al., 2021).

O ponto inicial da infecção viral é a entrada do vírus na célula, dessa forma é

um dos processos mais importantes, sendo o alvo no desenvolvimento de vacinas e

medicamentos. E esse processo com o vírus SARS-CoV-2 ocorre mediante a

interação de sua proteína estrutural Spike com a proteína humana, presente na

membrana da célula, enzima conversora de angiotensina-II (do inglês

angiotensin-converting enzyme 2- ACE2) (PENG et al., 2021).

1.2.1. Spike (S)

Há, em média, de 30 a 60 trímeros da proteína Spike sobressaindo do

envelope do vírus (PENG et al., 2021), com o aspecto de coroa característico da

família CoVs. O monômero da S é uma proteína de fusão tipo I, com 1273

aminoácidos, sendo a maior maquinaria de fusão viral identificada até o presente

momento (HUANG et al., 2020; PENG et al., 2021).

Esse pode ser dividido em um peptídeo sinal (1-13 amino ácidos) localizado

no N-terminal e duas subunidades: subunidade 1 (S1) localizada entre os resíduos

de aminoácidos 14-685, sendo responsável pela ligação com o receptor, e a

subunidade 2 (S2) presente entre os resíduos 686-1273 aa, que realiza a fusão com

a membrana da célula hospedeira (HUANG et al., 2020).

Na S1 tem-se a região N-terminal (14-305 aa) e o domínio de interação com

receptor (319-541 aa – do inglês Receptor Binding Domain - RBD). Já a S2 possui o

peptídeo de fusão (788-806 aa - do inglês Fusion Peptide - FP), as sequências de

repetição heptapeptídeo (do inglês Heptapeptide Repeat - HR) HR1 (912-984 aa) e

HR2 (1163-1213 aa), o domínio transmembranar (1213-1237 aa - do inglês

TransMembrane - TM) e o domínio citoplasmático (1237-1273 aa - do inglês

cytoplasm domain - CT) (HUANG et al., 2020).

As proteínas S atuam como precursor inativo no organismo, de forma que,

durante a infecção, essas proteínas são ativadas e clivadas em suas subunidades

S1 e S2, por proteases do hospedeiro, sendo uma etapa indispensável para a fusão

da membrana do vírus com a membrana da célula-alvo (HUANG et al., 2020).
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1.2.2. Variabilidade do Vírus

Vírus que possuem genoma de RNA, como o SARS-CoV-2, em geral, sofrem

mutações mais rápido e com uma taxa maior do que vírus de DNA, logo o

SARS-CoV-2 tem alta probabilidade de sofrer mutações e melhor se adaptar ao

ambiente. Tais mutações podem ocorrer em diversas regiões do genoma, sendo

essas sinônimas ou não-sinônimas, e podem implicar no aumento na afinidade do

vírus com o receptor, na melhora a suscetibilidade a infecção, impactar diagnóstico

e, não só reduzir a eficácia de tratamentos como também reduzir a neutralização por

anticorpos produzidos por infecções anteriores ou resultantes da vacinação

(ZEPEDA-CERVANTES et al., 2022).

Tal fato pode ser observado pelo surgimento das variantes e as ondas

causadas por elas ao longo desses quase 3 anos. Então, para rastrear tais variantes

a Organização Mundial da Saúde e colaboradores propuseram a caracterização

específica de Variantes de Interesse (do inglês Variants of Interest - VOIs), Variantes

de Preocupação (do inglês Variants of Concern – VOCs), e Variantes sob

Monitoramento (do inglês Variants under Monitoring – VUMs) (WHO, 2022).

As Variantes de Preocupação, VOCs, são aquelas que aumentam a

transmissibilidade, causam alteração negativa na epidemiologia da COVID-19, o

aumento na virulência, a alteração na apresentação clínica, ou diminuição da

eficácia das medidas sociais e saúde, diagnóstico, terapias ou vacinas disponíveis.

A atual VOC em circulação é a Omicron (B.1.1.529 - vários países), anteriores a

essa, classificada como VOC, tem-se a Alfa (B.1.1.7 - Estados Unidos), Beta

(B.1.351 - África do Sul), Gamma (P.1 - Brasil) e Delta (B.1.617.2 - Índia) (WHO,

2022).

A variante Alfa possui 23 mutações (14 não sinônimas; 6 sinônimas) e 3

deleções, sendo as mais significantes a H69-V70del, N501Y e P681H presentes na

proteína S. Já a variante Beta apresenta 12 mutações não sinônimas e uma

deleção, as quais dez dessas, incluindo a deleção, encontram-se na S (L18F, D80A,

D215G, LAL 242-244 DEL, R246I, K417N, E484K, N501Y, D614G e A701V). Na

variante Gamma há 17 mutações não sinônimas, 4 mutações sinônimas e 1 deleção,

e em sua proteína S encontram-se 12 mutações (L18F, T20N, P26S, D138Y, R190S,

K417T, E484T, N501Y, D614G, H655Y, T1027I e.V1176F). Quanto à variante Delta,

há três sublinhagens, B.1.617.1, B.1.617.2 e B.1.617.3, e são 17 mutações das
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quais as seguintes 4 são preocupantes: L452R, T478K, D614G, P681R. A ômicron

apresenta mais de 18 mil mutações em seu genoma, sendo que na região

codificadora são mais de 2,9 mil deleções e mutações sinônimas (mais de 2 mil), e

não sinônimas (mais de 11 mil). Na proteína S, há 30 mutações (ARAF et al., 2022;

MOHAMMADI; SHAYESTEHPOUR; MIRZAEI, 2021).

As Variantes de Interesse são aquelas com mudanças genéticas previstas ou

conhecidas por afetar as características dos vírus (transmissibilidade, gravidade,

escape imunológico, escape diagnóstico ou terapêutico) e causar transmissão

comunitária significativa ou múltiplos grupos, em diversos países com prevalência

relativa crescente com aumento no número de casos ao longo do tempo, ou demais

impactos epidemiológicos que sugerem um risco a saúde pública mundial.

Atualmente, não há VOIs circulando, mas oito variantes já foram classificadas como

tal, por exemplo a Zeta (P.2), cujo a amostra mais antiga registrada é no Brasil

(WHO, 2022).

Neste momento também não há Variantes em Monitoramento (VOM), mas 15

variante foram consideradas VOMs, por serem variantes que possuíam alterações

genéticas suspeitas de afetar as características do vírus que poderia indicar um risco

futuro, mas as evidências quanto ao impacto fenotípico ou epidemiológicos ainda

não são suficientes, exigindo monitoramento e avaliação enquanto aguarda novas

informações (WHO, 2022).

1.3. Proteínas Alvo: ACE2

A COVID-19 afeta principalmente indivíduos com comorbidades e/ou algum

tipo de imunossupressão. Além de que algumas pessoas desenvolvem a forma

severa da COVID-19, enquanto outros são assintomáticos. Assim, as características

do hospedeiro, como fatores de risco e genéticos, também podem afetar a

suscetibilidade e desenvolvimento da doença (CHOUDHARY et al., 2020;

ZEPEDA-CERVANTES et al., 2022).

A principal proteína receptora do SARS-CoV-2, a ACE2, atua como

carboxipeptidase simples que cliva polipeptídeos do sistema renina/angiotensina,

possuindo papel essencial na função cardíaca, sendo expresso em vários tecidos e

órgãos, o que sugere a potencial capacidade de infecção sistêmica em pacientes

com COVID-19 (PENG et al, 2021). Variantes dessa proteína já foram associadas

com hipertensão e outras doenças cardiovascular, e como a proteína possui
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interação direta com a proteína S, tais polimorfismos podem estar associados com a

suscetibilidade ao SARS-CoV-2 (CHOUDHARY et al., 2020; ZEPEDA-CERVANTES

et al., 2022).

Durante a interação com a proteína ACE2, a proteína viral S sofre alterações

conformacionais na qual muda do estado de pré-fusão para a fusão propriamente

dita, por meio da clivagem por uma proteína como Catepsina B e L, no

compartimento endossomal, ou , em especial, pela serino-protease transmembrana

2 (do inglês, transmembrane protease serine 2 - TMPRSS2), que tem papel

fundamental na patogênese e propagação viral, além de que seus inibidores

bloqueiam a entrada do vírus (ZEPEDA-CERVANTES et al., 2022).

Após a interação com a ACE2 e a clivagem pela TMPRSS2, a fusão então é

feita e o RNA viral entra na célula hospedeira e sequestra sua maquinaria para

sintetizar as poliproteínas, que são posteriormente clivadas nas proteínas não

estruturais, as proteínas estruturais e o RNA, que depois de montados são

transportados para fora da célula por exocitose (PRAJAPAT et al., 2020).

1.4 Aprendizagem de Máquina e Dinâmica Molecular

As mutações do sofridas pelo SARS-CoV-2 observadas nas suas variantes

assim como os polimorfismos observados em uma das principais estruturas

responsáveis pela entrada do vírus no hospedeiro, levantam questões,como por

exemplo, se variabilidade genética do vírus e do hospedeiro poderiam explicar os

diferentes graus de severidade nos casos de infecção, e como essas variabilidades

genéticas afetam a interação entre SARS-CoV-2 e ACE2. Além disso, levanta

questionamento em relação à possibilidade dos polimorfismos de ACE2 afetarem a

eficácia dos tratamentos. Para mais, o Brasil é o quinto país com maior número de

casos e o segundo em número de mortes por COVID-19 (WORLD HEALTH

ORGANIZATION, 2022), tendo em vista que há na população brasileira uma grande

diferença entre as proporções ancestrais, a interação entre vírus-hospedeiro em

indivíduos brasileiros apresenta comportamento diferente quando comparada a

outras populações?

Portanto, as variantes de SARS-Cov-2 associadas com os polimorfismos

encontrados na ACE2 em diferentes populações podem ser os principais fatores

para o entendimento da COVID-19. Entretanto, como essas mutações e

polimorfismos contribuem para melhorar a estabilidade e afinidade de interação
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entre os complexos SARS-CoV-2-ACE2 não é totalmente compreendido. A análise

de modos normais dos movimentos conformacionais das estruturas, assim como

dinâmica molecular são exemplos de abordagens empregadas na tentativa de

alcançar total compreensão do processo.

Para avaliar o efeito de uma mutação ou comparar mudanças estruturais

entre complexos, as simulações de dinâmica molecular proporcionam um

conhecimento único. Uma vez que, são capazes de prever como cada átomo em um

sistema se move por um dado período de tempo, sendo capazes de capturar vários

processos biomoleculares, tal como a resposta da molécula a perturbações,

mutações, adição ou remoção de ligantes etc (HOLLINGSWORTH; DROR, 2018).

Todavia, geram grandes quantidades de dados de milhares de átomos a cada

intervalo de tempo (FLEETWOOD et al., 2020). Assim, interpretar e extrair

informações dessas trajetórias não é um processo simples.

Métodos de aprendizado de máquinas são usados em análises de grande

quantidade de dados, pois reduzem a dimensionalidade do problema (FLEETWOOD

et al., 2020). Por isso, essas abordagens auxiliam na identificação de diferenças

significantes entre as diversas trajetórias obtidas durante a simulação de dinâmica

molecular, mesmo que essas diferenças sejam tênues.

Portanto, propõe-se nesse projeto usar trajetórias resultantes de simulações

de dinâmica molecular e abordagens de aprendizado de máquina a fim de revelar as

diferenças em linhagens de SARS-CoV-2 na região de interação com a ACE2.

1.5. Objetivo

Identificar, por meio de aprendizagem de máquinas, regiões ou resíduos

críticos na interação entre variantes do vírus e hospedeiro que possam impactar

significativamente a funcionalidade das proteínas ACE2 do hospedeiro e Spike do

SARS-CoV-2.
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2.MATERIAL E MÉTODOS

2.1. Trajetórias das Dinâmicas Moleculares

Para esse projeto foram utilizadas as trajetórias, de 100 ns cada, dos

complexos formados pela ACE2, sem mutações, com a região RBD presente na

subunidade S1 da proteína Spike sem mutações, e das variantes mais recentes

Delta, Omicron, e Zeta, por estarem presentes na população brasileira. Todos esses

complexos, bem como suas trajetórias, foram fornecidos pela mestranda Ana Luísa

Rodrigues de Ávila.

2.2. Aprendizagem de Máquina

Simulações convencionais de Dinâmicas Moleculares podem chegar a gerar

terabytes de dados sem qualquer pré-processamento, pois os sistemas podem ter

uma alta dimensionalidade, visto que as interações podem ser entre dezenas e

centenas de milhares de átomos, que ao final precisam ser condensados para

possibilitar interpretação humana das informações obtidas. Este problema com

dimensionalidade pode ser resolvido com uso de métodos de aprendizado de

máquina (FLEETWOOD et al., 2020). Dessa forma, baseado nas abordagens

usadas por Fleetwood e colaboradores (2020), foram usados os métodos

supervisionados Multilayer Perceptron (MLP) e Random Forest (RF) com os dados

das trajetórias para identificar resíduos que mais contribuem para a diferença no

comportamento dinâmico entre os complexos. O uso de ambos, fornece um

resultado mais robusto.

2.2.1 Pré-processamento

As características de entrada para tais algoritmos consiste no inverso das

distâncias entre os resíduos da ACE2 e S1 da Spike. Para isso, foi utilizado a

biblioteca Mdtraj (MCGIBBON et al., 2015), desenvolvida em python

(https://www.python.org/), para obtenção das distâncias entre os resíduos, sendo

mantidas só aqueles pares que em algum frame possuía distância igual ou menor

que 15 Å, distância suficiente para englobar todos os contatos na região de

interação, e essas então foram normalizadas.

Ao final desse processo tem-se os pares como características e os frames

como os valores de entrada para os algoritmos de aprendizado de máquina. Nesse
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processo também foram usadas as bibliotecas pandas (https://pandas.pydata.org/) e

numpy (https://numpy.org/) para manipulação dos dados, ambas também

desenvolvidas em python.

2.2.2. Multilayer Perceptron

Perceptron de múltiplas camadas (do inglês Multilayer Perceptron - MLP)

consiste em uma Rede Neural Artificial feedforward (do inglês feedforward Artificial

Neural Network) em que suas camadas são totalmente conectadas (FLEETWOOD

et al., 2020). Como função de ativação dos neurônios foi utilizado Rectified Linear

Unit (ReLU) (GLOROT; BORDES; BENGIO, 2011), por ser mais eficiente que outras

funções como a sigmóide, e para a otimização dos pesos será usado o Adam

(KINGMA; BA, 2015). Quanto às camadas, foi usado dois tipos de redes, uma cinco

camadas com cem neurônios em cada e outra em que testou-se o uso de uma

distribuição decrescente dos neurônios, tendo assim oito camadas com 100, 75, 50,

40, 30, 20, 10 e 5 neurônios respectivamente. Na implementação da rede usou-se a

biblioteca python Scikit-learn (https://scikit-learn.org/stable/index.html).

Para treinamento e teste dessas redes, depois de obter os valores inversos

das distâncias, foi construída uma matriz de correlação para obtenção do primeiro

perfil. Outros 4 perfis foram obtidos por meio de bootstrap e valor de threshold de

0.9.

2.2.3. LRP-0

Assim como outros algoritmos de aprendizagem de máquina, o MLP é

criticado por ser semelhante a uma caixa preta, uma vez que prejudica o

entendimento humano de seus resultados (FLEETWOOD et al., 2020). Portanto,

para extrair as características importantes para classificação, foi aplicado o

Layer-Wise Relevance Propagation (LRP). O LRP consiste em uma técnica que

redistribui o que foi recebido pelo neurônio para camada anterior, mantendo a

quantidade (MONTAVON et al., 2019). O LRP possui diversos tipos, e nesse

trabalho foi usado sua regra básica LRP-0:

(eq. 1)𝑅
𝑗
 =  ∑

𝑘

𝑎
𝑗
𝑤

𝑗𝑘

Σ
0,𝑗

 𝑎
𝑗
𝑤

𝑗𝑘
𝑅

𝑘
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Em que o é o valor assumido pelo neurônio na camada , são os pesos𝑎
𝑗

𝑗 𝑤
𝑗𝑘

que conectam a camada superior a camada inferior e consiste na relevância𝑘 𝑗 𝑅
𝑘

da camada superior que vai ser propagada para a camada inferior (FLEETWOOD et

al., 2020).

2.2.4. Random Forest

O Random Forest consiste em um algoritmo cuja predição é resultado da

média de um conjunto de várias árvores de decisão, sendo que cada árvore é

ajustada com uma subamostra do conjunto de dados (FLEETWOOD et al., 2020).

Para esse modelo foi usado o coeficiente de impureza Gini e cem árvores de

decisão. Para computar a importância da característica para um certo estado, foi

usado o método um contra todos (do inglês, one-versus-the-rest), em que é usado

um Random Forest para cada estado, gerando um classificador binário para cada

uma das classes, em que depois é computado a importância de Gini para essas.

Uma vez os dados invertidos e normalizados estes já podem ser usados como

entrada para o modelo, que também foi implementado usando a biblioteca

Scikit-learn (https://scikit-learn.org/stable/index.html),
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3.RESULTADOS E DISCUSSÃO

3.1 MLP

Ao final da seleção dos pares com pelo menos 15 A° em pelo menos um

frame e do bootstrap, obteve-se 5 perfis com 1828, 1907, 1925, 1909 e 1934 pares,

respectivamente. Todos com 40 mil frames. Então cada perfil foi usado para o

treinamento dos dois tipos de redes, o que resultou em 10 redes com acurácia de

100% e perdas menores que 0.01, como pode-se observar no Quadro 1 e 2. Demais

métricas presentes no reporte de classificação (do inglês Classification Report)

podem ser observadas em apêndices 1 e 2.

Quadro 1 - Acurácia e Perda dos MLPs com cinco camadas de 100 neurônios.

Perfil (Pares por Frame) Acurácia Perda

1828 x 40 mil 1.00 0.0011

1907 x 40 mil 1.00 0.0028

1925 x 40 mil 1.00 0.0005

1909 x 40 mil 1.00 0.0008

1934 x 40 mil 1.00 0.0027

Fonte: Elaborado pelo autor

Quadro 2 - Acurácia e Perda dos MLPs com oito camadas com distribuição decrescente de

neurônios.

Perfil (Pares por Frame) Acurácia Perda

1828 x 40 mil 1.00 0.0022

1907 x 40 mil 1.00 0.0014

1925 x 40 mil 1.00 0.0036

1909 x 40 mil 1.00 0.0008

1934 x 40 mil 1.00 0.0017

Fonte: Elaborado pelo autor

Dado essas métricas, de acurácia alta e perda muito pequena das redes, é

provável que tenha ocorrido overfitting, ou seja, ao invés de aprender com os dados

os algoritmos se ajustaram a esses. Logo, é necessário mais testes, fazendo o uso
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de diferentes parâmetros, para encontrar os mais adequados para esses algoritmos.

Posto isso, ainda assim é interessante avaliar os pares de resíduos indicados ao

final por esse métodos.

Nos quadros 3 e 4 pode-se observar os 5 pares mais importantes para a

classificação de cada complexo, resultante do LRP-0 para as redes. Nos apêndices

de 4 a 7 pode-se observar os gráficos de relevância para a rede com cinco

camadas, e em apêndices 8 a 11 os gráficos da rede com oito camadas.

Quadro 3 - Pares as maiores relevância para cada complexo, resultado LRP-0 para rede com

cinco camadas de cem neurônios.

Complexos Pares (ACE2, SPIKE) e Importância

ACE2-SPIKE(Selvagem)

(SER106, ASN487) = 8.991

(GLU22, SER477) = 7.337

(SER19, GLY485) = 6.243

(ASN338, GLN498) = 5.638

(SER19, ASP467) = 5.390

ACE2-SPIKE(Delta)

(LEU45, ASN450) = 4.736

(THR324, GLU406) = 4.588

(LEU391, LYS417) = 4.210

(GLN42, SER443) = 4.022

(LYS31, SER494) = 3.886

ACE2-SPIKE(Ômicron)

(GLU312, GLY504) = 1.142

(PHE72, TYR501) = 1.092

(GLY352, TYR451) = 1.002

(GLN325, GLY447) = 0.950

(GLU329, SER438) = 0.874

ACE2-SPIKE(P2)

(SER19, ASN477) = 1.298

(SER19, PRO479) = 0.908

(SER105, TYR489) = 0.781

(ANS338, THR500) = 0.640

(SER106, PHE486) = 0.595

Fonte: Elaborado pelo próprio autor.



20

Quadro 4 - Pares as maiores relevância para cada complexo, resultado LRP-0 para rede com

oito camadas com distribuição decrescente de neurônios..

Complexos Pares (ACE2, SPIKE) e Importância

ACE2-SPIKE(Selvagem)

(SER106, GLY485) = 4.777

(VAL107, PHE486) = 4.745

(GLN89, SER477) = 4.663

(SER19, PRO479) = 3.608

(ALA71, GLU484) = 2.778

ACE2-SPIKE(Delta)

(ASP30, GLU484) = 3.583

(GLN24, LYS417) = 1.667

(GLY352, ARG408) = 1.467

(ALA65, SER443) = 1.111

(ASN33, GLN498) = 0.965

ACE2-SPIKE(Ômicron)

(GLU329, SER438) = 2.434

(GLN42, SER349) = 2.094

(TYR381, GLY502) = 1.759

(GLY352, ASN448) = 1.656

(GLY354, GLY504) = 1.501

ACE2-SPIKE(P2)

(PRO321, ARG403) = 6.209

(SER19, ASN477) = 5.333

(SER19, PRO479) = 4.838

(GLN325, SER371) = 4.581

(GLU37, THR415) = 4.220

Fonte: Elaborado pelo próprio autor.

Vale de nota que a mudança nos parâmetros, neste caso a mudança no

número de camadas, resultou na mesma acurácia e valores de perda semelhantes,

mas em um diferente conjunto de pares considerados os mais relevantes para a

classificação dos complexos. Isso é decorrente da diferença do número e

distribuição de neurônios, visto que isso afeta a quantidade e valores dos pesos, que

implicam em valores de neurônios diferentes e, portanto, em um resultado do LRP-0

diferente.

Analisando os pares indicados nota-se a presença dos resíduos GLN24,

GLN42, LEU45, GLN325, GLU329 e GLY354, localizados na proteína ACE2, que

são considerados resíduos chave na interação com a proteína S (SURYAMOHAN et
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al., 2021). Além desses, um dos resíduos-chave da ACE2 que apareceu mais de

uma vez dentre os pares é o SER19, inclusive mutação nesse resíduo (S19P) foi

identificado como sendo um dos polimorfismos que aumentam a interação proteína

ACE2/S, o que difere dos resíduos ASN33 , PHE72 e GLY352 cujas mutações N33I,

F72V e G352V respectivamente, diminuem tal interação (SURYAMOHAN et al.,

2021).

Ademais, outros resíduos-chave que apareceram nos pares são: o resíduo

ASP30, que faz ponte salina com o resíduo LYS407 da S, mas aqui aparece como

par do resíduo GLU484, sendo necessária uma investigação estrutural; o resíduo

LYS31, em que a mutação K31R é prevista como sendo uma das mutações que

reduzem a interação com a proteína S; e o resíduo GLU37, que coordena contatos

polares como os resíduos TYR505 e GLY502 do RBD da S (SURYAMOHAN et al.,

2021), contudo aqui faz par com o resíduo THR415, enquanto o resíduo GLY502 faz

com o TYR381 da ACE2.

Quanto aos resíduos da proteína Spike, aparecem nos pares os resíduos

críticos PHE486, SER494 e TYR501 para interação com a ACE2, sendo que último

a mutação N501Y, que está presente em múltiplas VOCs, e garante uma maior

afinidade de ligação com a ACE2 dado interação mais forte com seus resíduos

TYR41 e LYS353 (SINGH et al., 2021), entretanto nesses resultados aparece em par

com o resíduo PHE72.

No que se refere ao resíduo LYS417, a mutação K417N aumenta a

transmissibilidade do vírus, enquanto a mutação no resíduo SER477 (S477N)

aumenta afinidade de ligação e no resíduo GLU484 a mutação E484K está

associado a resistência a anticorpos (SINGH et al., 2021). Há também os resíduos

SER371 e GLN498, em que suas respectivas mutações S371L e Q498R estão

associadas a uma maior afinidade de ligação entre a variante Ômicron e a proteína

ACE2 (ARAF et al., 2022 ).

Essa diferença na formação de pares pode indicar que selecionar apenas os

pares que em um dos frames tenha distância menor que 15 Å seja um parâmetro

abrangente, tendo em vista que os complexos se movem ao longo da trajetória e por

um breve período podem estar próximos o suficiente para ter tal distância. Desta

maneira, é necessário que os pares sejam visualizados na estrutura do complexo

para melhor compreensão.
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3.2 RF

Para o Random Forest foram usados 3201 pares, também com 40 mil frames,

que, como foi usado o bootstrap implementado neste classificador, foi dividido em

amostras para o treinamento das cem árvores de decisão que integraram esse

modelo. E como o um-contra-todos foi usado, obteve-se ao final 4 classificadores

Random Forest, um para cada classe, em que obteve-se uma acurácia de 100%, o

que também indica overfitting. O Classification Report pode ser observado em

apêndice 3.

No quadro 5 pode-se observar os cinco pares mais importantes pelo Random

Forest, sendo resultado da importância de Gini dos classificadores. Nos apêndices 5

a 8 tem-se o gráfico para cada complexo.

Quanto à importância dada pela impureza de Gini no Random Forest, os

pares são formados por alguns dos resíduos já mencionados no MLP, mas também

pelos resíduos da Spike TYR505, cuja mutação pode aumentar a transmissão

(SINGH et al., 2021). Pelo resíduo ARG498, que é uma das mutações presentes na

variante Ômicron. responsável pela maior afinidade desta com a proteína ACE2

(ARAF et al., 2022). Em relação a ACE2, o resíduo SER19 foi recorrente entre os

pares, esse sendo um resíduo-chave, assim como os resíduos LYS353 e THR27,

que também apareceram entre os pares (SURYAMOHAN et al., 2021).
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Quadro 5 - Pares com maior importância de Gini

Complexos Pares (ACE2, SPIKE) e Importância

ACE2-SPIKE(Selvagem)

(SER19, VAL483) = 0.027

(SER19, CYS488) = 0.026

(SER19, CYS480) = 0.016

(SER44, TYR505) = 0.0143

(SER19, GLN474) = 0.0143

ACE2-SPIKE(Delta)

(ALA36, ASN501) = 0.021

(GLY66, ASN501) = 0.020

(ALA342, THR500) = 0.019

(ASN103, TYR505) = 0.015

(LYS68, ASN501) = 0.013

ACE2-SPIKE(Ômicron)

(ALA25, ASN417) = 0.031

(GLN24, ASN417) = 0.031

(ILE21, ASN417) = 0.031

(LYS353, ARG498) = 0.029

(THR27, ASN417) = 0.028

ACE2-SPIKE(P2)

(SER106, LYS484) = 0.256

(SER19, CYS480) = 0.023

(SER105, ASN487) = 0.022

(GLY104, ASN487) = 0.020

(SER105, LYS484) = 0.020

Fonte: Elaborado pelo próprio autor.

.
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5.CONCLUSÃO
Mediante ao exposto ao longo desse trabalho, pode-se concluir que as

técnicas de aprendizado de máquina apresentadas, MLP e RF, e seus respectivos

métodos de extração de características LRP-0 e Importância de Gini, possuem

capacidade de apresentar resultados interessantes quanto a resíduos e pares dos

complexos abordado. Contudo, ainda é necessário mais testes em relação aos

parâmetros de ambos modelos, a fim de adequá-los para que não ocorra o

overfitting. Além disso, vale ressaltar que, uma vez ajustado os parâmetros e

obtenção dos valores adequados, faz-se necessário também a análise na estrutura

dos pares indicados como os mais importantes para classificação, o que pode levar

a insights quanto ao impacto dessas na interação do complexo ACE2/S.
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APÊNDICE
Apêndice 1 - Classification Report MLP com cinco camadas de cem neurônios.

Perfil Classification Report

1828 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.0011579129333462378

1907 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.0028196864327025587

1925 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.000468362446264934

1909 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.0007678636780219338
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1934 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.0027129004542402733

Fonte: Elaborado pelo autor.

Apêndice 2 - Classification Report MLP com distribuição decrescente de neurônios em oito

camadas.

Perfil Classification Report

1828 x 40 mil precision    recall  f1-score support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.0021944622069453297

1907 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.001368776453017395

1925 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
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macro avg       1.00      1.00      1.00      8001
weighted avg       1.00      1.00      1.00      8001

Perda: 0.003572032391250793

1909 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.0008118542414011292

1934 x 40 mil precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Perda: 0.0017346427187478351

Fonte: Elaborado pelo autor.

Apêndice 3 - Classification Report do Random Forest

precision    recall  f1-score   support

ACE2-SPIKE(P2)       1.00      1.00      1.00      2003
ACE2-SPIKE(WT)       1.00      1.00      1.00      2018

ACE2-SPIKE(delta1)       1.00      1.00      1.00      2000
ACE2-SPIKE(omicron1)       1.00      1.00      1.00      1980

accuracy                           1.00      8001
macro avg       1.00      1.00      1.00      8001

weighted avg       1.00      1.00      1.00      8001

Fonte: Elaborado pelo autor.
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Apêndice 4 - Gráfico dos resultados do LRP-0 da rede com cinco camadas para o complexo

ACE2-SPIKE(Selvagem)

Fonte: Elaborado pelo autor.

Apêndice 5 - Gráfico dos resultados do LRP-0 da rede com cinco camadas para o complexo

ACE2-SPIKE(Delta)

Fonte: Elaborado pelo autor.
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Apêndice 6 - Gráfico dos resultados do LRP-0 da rede com cinco camadas para o complexo

ACE2-SPIKE(Ômicron)

Fonte: Elaborado pelo autor.

Apêndice 7 - Gráfico dos resultados do LRP-0 da rede com cinco camadas para o complexo

ACE2-SPIKE(P2)

Fonte: Elaborado pelo autor.
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Apêndice 8 -  Gráfico dos resultados do LRP-0 da rede com distribuição decrescente de

neurônios em oito camadas  para o complexo ACE2-SPIKE(Selvagem)

Fonte: Elaborado pelo autor.

Apêndice 9 -  Gráfico dos resultados do LRP-0 da rede com distribuição decrescente de

neurônios em oito camadas  para o complexo ACE2-SPIKE(Delta)

Fonte: Elaborado pelo autor.
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Apêndice 10 -  Gráfico dos resultados do LRP-0 da rede com distribuição decrescente de

neurônios em oito camadas  para o complexo ACE2-SPIKE(Ômicron)

Fonte: Elaborado pelo autor.

Apêndice 11 -  Gráfico dos resultados do LRP-0 da rede com distribuição decrescente de

neurônios em oito camadas  para o complexo ACE2-SPIKE(P2).

Fonte: Elaborado pelo autor.
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Apêndice 12 -  Gráfico dos resultados da Importância de Gini do Random Forest para o

complexo ACE2-SPIKE(Selvagem).

Fonte: Elaborado pelo autor.

Apêndice 13 -  Gráfico dos resultados da Importância de Gini do Random Forest para o

complexo ACE2-SPIKE(Delta).

Fonte: Elaborado pelo autor.
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Apêndice 14 -  Gráfico dos resultados da Importância de Gini do Random Forest para o

complexo ACE2-SPIKE(Ômicron).

Fonte: Elaborado pelo autor.

Apêndice 15 -  Gráfico dos resultados da Importância de Gini do Random Forest para o

complexo ACE2-SPIKE(P2).

Observação: os pares que se sobrepõem são (GLY104, ASN487) e (SER105, LYS484).

Fonte: Elaborado pelo autor.




