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RESUMO

Desde de 2020 a populacdo mundial vem enfrentando a pandemia de COVID-19,
doenga infecciosa causada pela Sindrome Respiratoria Aguda Grave do
Coronavirus-2 (SARS-CoV-2), que, até o momento, causou mais de 6,6 milhdes de
vitimas. O SARS-CoV-2 possui genoma de RNA, o que o torna mais propenso a
mutacdes que um virus de DNA, fato observavel pelo surgimento de diferentes
variantes. Tais mutagbes podem implicar no aumento da afinidade do virus com o
receptor ACE2, melhorar a suscetibilidade a infecgédo, impactar no diagnéstico e, néo
sO reduzir a eficacia de tratamentos como também reduzir a neutralizacdo por
anticorpos. Além disso, caracteristicas do hospedeiro, como fatores de risco e
genéticos, também podem afetar a suscetibilidade e desenvolvimento da doenga, e
como a ACE2 possui interacdo direta com a proteina S, polimorfismos presentes
nessa podem estar associados com a suscetibilidade ao SARS-CoV-2. Entretanto,
como essas mutagdes e polimorfismos, encontrados em diferentes populagdes,
contribuem para melhorar a estabilidade e afinidade de interagéo entre o complexo
SARS-CoV-2-ACE2 nao é totalmente compreendido. Métodos comumente usados
para compreender este processo, como Dindmicas Moleculares, geram grandes
quantidades de dados, consequentemente interpretar e extrair informagdes desses
métodos ndo € um processo simples. Métodos de aprendizado de maquinas sao
usados em analises de grande quantidade de dados, pois reduzem a
dimensionalidade do problema, assim, auxiliam na identificacdo de diferencas
significantes entre as trajetdérias resultantes de dinamicas moleculares. Portanto,
propbs-se usar os classificadores Multilayer Perceptron e Random Forest a fim de
identificar regides ou residuos criticos na interagdo entre variantes do virus e
hospedeiro que possam impactar significativamente a funcionalidade das proteinas
ACE2 do hospedeiro e Spike do SARS-CoV-2. Ainda que estes classificadores
sofreram overfitting, esses foram capazes de identificar pares contendo residuos
chaves na interagdo entre proteinas. Contudo, é necessario um melhor ajuste dos

parametros e avaliagao estrutural dos pares identificados.

Palavras-chave: COVID-19. Bioinformatica estrutural. Simulagdes moleculares.



ABSTRACT

Since 2020, the world's population has been facing the COVID-19 pandemic, an
infectious desease caused by Severe Acute Respiratory Syndrome coronavirus-2
(SARS-CoV-2), which, to the present day, caused more than 6,6 million victims. The
SARS-CoV-2 has a RNA genome, which makes it more prone to mutations than a
DNA virus, notable by the different variants that emerged. Such mutations may lead
to an increase of binding affinity of the virus and its receptor ACE2, improving
infection susceptibility, impact diagnosis, and not only reduce the effectiveness of
treatments but also reduce the antibody neutralization. Futhermore, host
characteristics, like risk and genetic factors, may also affect susceptibility and the
desease development, and as ACE2 has a direct interaction with the S protein,
polymorphisms in this protein may be associated with SARS-CoV-2 susceptibility.
However, how this mutation and polymorphisms, found in different populations,
contribute to improve stability and affinity between the complex SARS-CoV-2-ACE2
is not fully understood. Methods commonly used to understand this process, for
exemple Molecular Dinamics, generate large amounts of data, consequently
interpreting and extracting information from these methods is not a simple process.
Machine learning methods are used in analyzes of big data, because it reduces the
dimensionality of the problem, thus, it helps to identify significant differences between
the trajectories resulting from molecular dynamics. Therefore, it was proposed the
use of the classifiers Multilayer Perceptron and Random Forest in order to identify
critical regions or residues between virus and host variants that could significantly
impact the functionality of the host ACE2 and Spike of SARS-CoV-2 proteins.
Although these classifiers were overfitted, these were able to identify pairs containing
key residues in the interaction between proteins. However, a better adjustment of the

parameters and structural evaluation of the identified pairs is necessary.

Keywords: COVID-19. Structural bioinformatics. Molecular simulations.
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1. INTRODUGAO

1.1. COVID-19

Em 11 de marco de 2020, a Organizacdo Mundial da Saude (OMS)
caracterizou como pandemia a COVID-19 (WHO DIRECTOR GENERALS
SPEECHES, 2020), doenga infecciosa causada pela Sindrome Respiratoria Aguda
Grave do Coronavirus-2 (do inglés Severe Acute Respiratory Syndrome
coronavirus-2 - SARS-CoV-2). Até o presente momento, novembro de 2022, ja foram
confirmados mais de 630 milhdes de casos confirmados, incluindo mais de 6,6
milhées de mortes globalmente. Sé no Brasil, s&o mais de 35 milhées de casos com
quase 690 mil mortes (WORLD HEALTH ORGANIZATION, 2022).

A COVID-19 é uma doenga respiratoria, transmitida pelas células epiteliais do
pulmao por meio de aerossois, que pode acarretar desde uma pneumonia viral leve
até Sindrome do Desconforto Respiratério Agudo (SDRA), e em casos ainda mais

graves levando a faléncia multipla dos 6rgaos (CHOUDHARY et al., 2020).

1.2. SARS-CoV-2

SARS-CoV-2 pertence a familia de Coronaviridae (CoVs), que sao divididos
em quatro géneros: alfas-CoVs, beta-CoVs, gamma-CoVs e delta-CoVs. Desses, 0
SARS-CoV-2 pertence ao género beta-CoVs, que assim como os alfas-CoVs, em
sua grande maioria, originam-se em morcegos e infectam outros mamiferos. Fazem
parte também desse género os altamente patogénicos coronavirus humanos
Sindrome Respiratéria Aguda Grave do Coronavirus (do inglés Severe Acute
Respiratory Syndrome coronavirus - SARS-CoV) e Sindrome respiratéria do Oriente
Médio (do inglés Middle East Respiratory Syndrome - MERS), com taxas de
letalidade de 10.9% e 34.3%, respectivamente (SINGH et al., 2021).

Sendo um virus de RNA de fita simples, de sentido positivo, 0 SARS-CoV-2
possui um genoma de aproximadamente 30 mil nucleotideos, que codifica duas
grandes poliproteinas (pp1a e pplab) que séo clivadas em 16 proteinas néo
estruturais (NSPs), essenciais para sintese de RNA viral, e outras fungbes. Além
disso, codifica quatro proteinas estruturais, as quais sdo Spike(S), Envelope(E),

Membrana(M) e proteinas do nucleocapsideo(N), necessarias para entrada e
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montagem do virus. E nove proteinas acessorias que devem atuar na neutralizagéao
da imunidade do hospedeiro durante a infecgdo (PENG et al., 2021).

O ponto inicial da infecgao viral € a entrada do virus na célula, dessa forma é
um dos processos mais importantes, sendo o alvo no desenvolvimento de vacinas e
medicamentos. E esse processo com o virus SARS-CoV-2 ocorre mediante a
interacdo de sua proteina estrutural Spike com a proteina humana, presente na
membrana da célula, enzima conversora de angiotensina-ll (do inglés

angiotensin-converting enzyme 2- ACE2) (PENG et al., 2021).

1.2.1. Spike (S)

Ha, em média, de 30 a 60 trimeros da proteina Spike sobressaindo do
envelope do virus (PENG et al., 2021), com o aspecto de coroa caracteristico da
familia CoVs. O monémero da S é uma proteina de fusdo tipo |, com 1273
aminoacidos, sendo a maior maquinaria de fusao viral identificada até o presente
momento (HUANG et al., 2020; PENG et al., 2021).

Esse pode ser dividido em um peptideo sinal (1-13 amino acidos) localizado
no N-terminal e duas subunidades: subunidade 1 (S1) localizada entre os residuos
de aminoacidos 14-685, sendo responsavel pela ligagdo com o receptor, e a
subunidade 2 (S2) presente entre os residuos 686-1273 aa, que realiza a fusdo com
a membrana da célula hospedeira (HUANG et al., 2020).

Na S1 tem-se a regido N-terminal (14-305 aa) e o dominio de interagdo com
receptor (319-541 aa — do inglés Receptor Binding Domain - RBD). Ja a S2 possui 0
peptideo de fusdo (788-806 aa - do inglés Fusion Peptide - FP), as sequéncias de
repeticdo heptapeptideo (do inglés Heptapeptide Repeat - HR) HR1 (912-984 aa) e
HR2 (1163-1213 aa), o dominio transmembranar (1213-1237 aa - do inglés
TransMembrane - TM) e o dominio citoplasmatico (1237-1273 aa - do inglés
cytoplasm domain - CT) (HUANG et al., 2020).

As proteinas S atuam como precursor inativo no organismo, de forma que,
durante a infecgao, essas proteinas sao ativadas e clivadas em suas subunidades
S1 e S2, por proteases do hospedeiro, sendo uma etapa indispensavel para a fusao

da membrana do virus com a membrana da célula-alvo (HUANG et al., 2020).
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1.2.2. Variabilidade do Virus

Virus que possuem genoma de RNA, como o SARS-CoV-2, em geral, sofrem
mutagbes mais rapido e com uma taxa maior do que virus de DNA, logo o
SARS-CoV-2 tem alta probabilidade de sofrer mutagées e melhor se adaptar ao
ambiente. Tais mutagbes podem ocorrer em diversas regides do genoma, sendo
essas sindnimas ou nao-sinbnimas, e podem implicar no aumento na afinidade do
virus com o receptor, na melhora a suscetibilidade a infec¢ao, impactar diagnostico
e, nao so reduzir a eficacia de tratamentos como também reduzir a neutralizagao por
anticorpos produzidos por infecgcbes anteriores ou resultantes da vacinagao
(ZEPEDA-CERVANTES et al., 2022).

Tal fato pode ser observado pelo surgimento das variantes e as ondas
causadas por elas ao longo desses quase 3 anos. Entao, para rastrear tais variantes
a Organizagdo Mundial da Saude e colaboradores propuseram a caracterizagao
especifica de Variantes de Interesse (do inglés Variants of Interest - VOIs), Variantes
de Preocupacdo (do inglés Variants of Concern — VOCs), e Variantes sob
Monitoramento (do inglés Variants under Monitoring — VUMs) (WHO, 2022).

As Variantes de Preocupacdo, VOCs, sao aquelas que aumentam a
transmissibilidade, causam alteracdo negativa na epidemiologia da COVID-19, o
aumento na viruléncia, a alteracdo na apresentacdo clinica, ou diminuicido da
eficacia das medidas sociais e saude, diagndstico, terapias ou vacinas disponiveis.
A atual VOC em circulacédo é a Omicron (B.1.1.529 - varios paises), anteriores a
essa, classificada como VOC, tem-se a Alfa (B.1.1.7 - Estados Unidos), Beta
(B.1.351 - Africa do Sul), Gamma (P.1 - Brasil) e Delta (B.1.617.2 - india) (WHO,
2022).

A variante Alfa possui 23 mutacdes (14 nao sinénimas; 6 sinbnimas) e 3
delecdes, sendo as mais significantes a H69-V70del, N501Y e P681H presentes na
proteina S. Ja a variante Beta apresenta 12 mutagbes ndo sinbnimas e uma
delecédo, as quais dez dessas, incluindo a delegcéo, encontram-se na S (L18F, D8O0A,
D215G, LAL 242-244 DEL, R246l, K417N, E484K, N501Y, D614G e A701V). Na
variante Gamma ha 17 mutagdes nao sindnimas, 4 mutagdes sinbnimas e 1 delecao,
e em sua proteina S encontram-se 12 mutag¢des (L18F, T20N, P26S, D138Y, R190S,
K417T, E484T, N501Y, D614G, H655Y, T10271 e.V1176F). Quanto a variante Delta,
ha trés sublinhagens, B.1.617.1, B.1.617.2 e B.1.617.3, e s&do 17 mutagbes das
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quais as seguintes 4 sdo preocupantes: L452R, T478K, D614G, P681R. A édmicron
apresenta mais de 18 mil mutagdes em seu genoma, sendo que na regiao
codificadora sao mais de 2,9 mil delegcbes e mutagcdes sinbnimas (mais de 2 mil), e
nao sindnimas (mais de 11 mil). Na proteina S, ha 30 mutagdes (ARAF et al., 2022;
MOHAMMADI; SHAYESTEHPOUR; MIRZAEI, 2021).

As Variantes de Interesse sao aquelas com mudangas genéticas previstas ou
conhecidas por afetar as caracteristicas dos virus (transmissibilidade, gravidade,
escape imunoldgico, escape diagndstico ou terapéutico) e causar transmissao
comunitaria significativa ou multiplos grupos, em diversos paises com prevaléncia
relativa crescente com aumento no numero de casos ao longo do tempo, ou demais
impactos epidemiolégicos que sugerem um risco a saude publica mundial.
Atualmente, ndo ha VOls circulando, mas oito variantes ja foram classificadas como
tal, por exemplo a Zeta (P.2), cujo a amostra mais antiga registrada é no Brasil
(WHO, 2022).

Neste momento também n&o ha Variantes em Monitoramento (VOM), mas 15
variante foram consideradas VOMSs, por serem variantes que possuiam alteragdes
genéticas suspeitas de afetar as caracteristicas do virus que poderia indicar um risco
futuro, mas as evidéncias quanto ao impacto fenotipico ou epidemioldgicos ainda
nao sao suficientes, exigindo monitoramento e avaliagdo enquanto aguarda novas
informacodes (WHO, 2022).

1.3. Proteinas Alvo: ACE2

A COVID-19 afeta principalmente individuos com comorbidades e/ou algum
tipo de imunossupressdo. Além de que algumas pessoas desenvolvem a forma
severa da COVID-19, enquanto outros sao assintomaticos. Assim, as caracteristicas
do hospedeiro, como fatores de risco e genéticos, também podem afetar a
suscetibilidade e  desenvolvimento da doengca (CHOUDHARY et al., 2020;
ZEPEDA-CERVANTES et al., 2022).

A principal proteina receptora do SARS-CoV-2, a ACE2, atua como
carboxipeptidase simples que cliva polipeptideos do sistema renina/angiotensina,
possuindo papel essencial na fungao cardiaca, sendo expresso em varios tecidos e
orgaos, o0 que sugere a potencial capacidade de infecgédo sistémica em pacientes
com COVID-19 (PENG et al, 2021). Variantes dessa proteina ja foram associadas

com hipertensdo e outras doencas cardiovascular, e como a proteina possui
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interacao direta com a proteina S, tais polimorfismos podem estar associados com a
suscetibilidade ao SARS-CoV-2 (CHOUDHARY et al., 2020; ZEPEDA-CERVANTES
et al., 2022).

Durante a interagdo com a proteina ACE2, a proteina viral S sofre alteragdes
conformacionais na qual muda do estado de pré-fusdo para a fusdo propriamente
dita, por meio da clivagem por uma proteina como Catepsina B e L, no
compartimento endossomal, ou , em especial, pela serino-protease transmembrana
2 (do inglés, transmembrane protease serine 2 - TMPRSS2), que tem papel
fundamental na patogénese e propagacao viral, além de que seus inibidores
bloqueiam a entrada do virus (ZEPEDA-CERVANTES et al., 2022).

Apods a interagao com a ACE2 e a clivagem pela TMPRSS2, a fusédo entéo é
feita e o RNA viral entra na célula hospedeira e sequestra sua maquinaria para
sintetizar as poliproteinas, que sao posteriormente clivadas nas proteinas nao
estruturais, as proteinas estruturais e o RNA, que depois de montados sao

transportados para fora da célula por exocitose (PRAJAPAT et al., 2020).

1.4 Aprendizagem de Maquina e Dinamica Molecular

As mutac¢des do sofridas pelo SARS-CoV-2 observadas nas suas variantes
assim como os polimorfismos observados em uma das principais estruturas
responsaveis pela entrada do virus no hospedeiro, levantam questdes,como por
exemplo, se variabilidade genética do virus e do hospedeiro poderiam explicar os
diferentes graus de severidade nos casos de infecgdo, e como essas variabilidades
genéticas afetam a interacdo entre SARS-CoV-2 e ACE2. Além disso, levanta
questionamento em relagéo a possibilidade dos polimorfismos de ACE2 afetarem a
eficacia dos tratamentos. Para mais, o Brasil € o quinto pais com maior nimero de
casos e 0 segundo em numero de mortes por COVID-19 (WORLD HEALTH
ORGANIZATION, 2022), tendo em vista que ha na populagéo brasileira uma grande
diferenca entre as proporgdes ancestrais, a interagao entre virus-hospedeiro em
individuos brasileiros apresenta comportamento diferente quando comparada a
outras populagdes?

Portanto, as variantes de SARS-Cov-2 associadas com os polimorfismos
encontrados na ACE2 em diferentes populagbes podem ser os principais fatores
para o entendimento da COVID-19. Entretanto, como essas mutagcbes e

polimorfismos contribuem para melhorar a estabilidade e afinidade de interagdo
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entre os complexos SARS-CoV-2-ACE2 nao é totalmente compreendido. A analise
de modos normais dos movimentos conformacionais das estruturas, assim como
dindmica molecular sdo exemplos de abordagens empregadas na tentativa de
alcancar total compreens&o do processo.

Para avaliar o efeito de uma mutacdo ou comparar mudancas estruturais
entre complexos, as simulacbes de dindmica molecular proporcionam um
conhecimento unico. Uma vez que, sdo capazes de prever como cada atomo em um
sistema se move por um dado periodo de tempo, sendo capazes de capturar varios
processos biomoleculares, tal como a resposta da molécula a perturbacgoes,
mutagdes, adicdo ou remogao de ligantes etc (HOLLINGSWORTH; DROR, 2018).
Todavia, geram grandes quantidades de dados de milhares de atomos a cada
intervalo de tempo (FLEETWOOD et al.,, 2020). Assim, interpretar e extrair
informagdes dessas trajetorias ndo € um processo simples.

Métodos de aprendizado de maquinas s&o usados em analises de grande
quantidade de dados, pois reduzem a dimensionalidade do problema (FLEETWOOD
et al., 2020). Por isso, essas abordagens auxiliam na identificacédo de diferengas
significantes entre as diversas trajetérias obtidas durante a simulacdo de dinamica
molecular, mesmo que essas diferengas sejam ténues.

Portanto, propde-se nesse projeto usar trajetorias resultantes de simulagdes
de dindmica molecular e abordagens de aprendizado de maquina a fim de revelar as

diferencas em linhagens de SARS-CoV-2 na regido de interagdo com a ACEZ2.

1.5. Objetivo

Identificar, por meio de aprendizagem de maquinas, regides ou residuos
criticos na interagdo entre variantes do virus e hospedeiro que possam impactar
significativamente a funcionalidade das proteinas ACE2 do hospedeiro e Spike do
SARS-CoV-2.
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2.MATERIAL E METODOS

2.1. Trajetdrias das Dinamicas Moleculares

Para esse projeto foram utilizadas as trajetorias, de 100 ns cada, dos
complexos formados pela ACE2, sem mutagdes, com a regido RBD presente na
subunidade S1 da proteina Spike sem mutagdes, e das variantes mais recentes
Delta, Omicron, e Zeta, por estarem presentes na populagao brasileira. Todos esses
complexos, bem como suas trajetérias, foram fornecidos pela mestranda Ana Luisa

Rodrigues de Avila.

2.2. Aprendizagem de Maquina

Simulagdes convencionais de Dinamicas Moleculares podem chegar a gerar
terabytes de dados sem qualquer pré-processamento, pois os sistemas podem ter
uma alta dimensionalidade, visto que as interagcdes podem ser entre dezenas e
centenas de milhares de atomos, que ao final precisam ser condensados para
possibilitar interpretacdo humana das informacdes obtidas. Este problema com
dimensionalidade pode ser resolvido com uso de métodos de aprendizado de
maquina (FLEETWOOD et al., 2020). Dessa forma, baseado nas abordagens
usadas por Fleetwood e colaboradores (2020), foram usados os métodos
supervisionados Multilayer Perceptron (MLP) e Random Forest (RF) com os dados
das trajetdrias para identificar residuos que mais contribuem para a diferenca no
comportamento dindmico entre os complexos. O uso de ambos, fornece um

resultado mais robusto.

2.2.1 Pré-processamento

As caracteristicas de entrada para tais algoritmos consiste no inverso das
distancias entre os residuos da ACE2 e S1 da Spike. Para isso, foi utilizado a
biblioteca Mdtraj (MCGIBBON et al.,, 2015), desenvolvida em python
(https://www.python.org/), para obtengcdo das disténcias entre os residuos, sendo

mantidas s6 aqueles pares que em algum frame possuia distancia igual ou menor
que 15 A, distancia suficiente para englobar todos os contatos na regido de
interacao, e essas entdo foram normalizadas.

Ao final desse processo tem-se os pares como caracteristicas e os frames

como os valores de entrada para os algoritmos de aprendizado de maquina. Nesse
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processo também foram usadas as bibliotecas pandas (https://pandas.pydata.org/) e
numpy (https://numpy.org/) para manipulagdo dos dados, ambas também

desenvolvidas em python.

2.2.2. Multilayer Perceptron

Perceptron de multiplas camadas (do inglés Multilayer Perceptron - MLP)
consiste em uma Rede Neural Artificial feedforward (do inglés feedforward Artificial
Neural Network) em que suas camadas s&o totalmente conectadas (FLEETWOOD
et al., 2020). Como fungdo de ativagdo dos neurdnios foi utilizado Rectified Linear
Unit (ReLU) (GLOROT; BORDES; BENGIO, 2011), por ser mais eficiente que outras
fungcdes como a sigmoide, e para a otimizagcdo dos pesos sera usado o Adam
(KINGMA; BA, 2015). Quanto as camadas, foi usado dois tipos de redes, uma cinco
camadas com cem neurdnios em cada e outra em que testou-se 0 uso de uma
distribuicao decrescente dos neurbnios, tendo assim oito camadas com 100, 75, 50,
40, 30, 20, 10 e 5 neurbnios respectivamente. Na implementagcdo da rede usou-se a

biblioteca python Scikit-learn (https://scikit-learn.org/stable/index.html).

Para treinamento e teste dessas redes, depois de obter os valores inversos
das distancias, foi construida uma matriz de correlacdo para obtencado do primeiro
perfil. Outros 4 perfis foram obtidos por meio de bootstrap e valor de threshold de
0.9.

2.2.3. LRP-0

Assim como outros algoritmos de aprendizagem de maquina, o MLP é
criticado por ser semelhante a uma caixa preta, uma vez que prejudica o
entendimento humano de seus resultados (FLEETWOOQOD et al., 2020). Portanto,
para extrair as caracteristicas importantes para classificagdo, foi aplicado o
Layer-Wise Relevance Propagation (LRP). O LRP consiste em uma técnica que
redistribui 0 que foi recebido pelo neurbnio para camada anterior, mantendo a
quantidade (MONTAVON et al., 2019). O LRP possui diversos tipos, € nesse
trabalho foi usado sua regra basica LRP-0:

aw

_ ok
Rj = Zk T aw Rk (eq. 1)
0j j Jjk
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Em que o a, € o valor assumido pelo neurdnio na camada j, W, S840 0S pesos
que conectam a camada superior k a camada inferior j e Rk consiste na relevancia

da camada superior que vai ser propagada para a camada inferior (FLEETWOOD et
al., 2020).

2.2.4. Random Forest

O Random Forest consiste em um algoritmo cuja predicdo é resultado da
média de um conjunto de varias arvores de decisdo, sendo que cada arvore é
ajustada com uma subamostra do conjunto de dados (FLEETWOOD et al., 2020).
Para esse modelo foi usado o coeficiente de impureza Gini e cem arvores de
decisdo. Para computar a importancia da caracteristica para um certo estado, foi
usado o método um contra todos (do inglés, one-versus-the-rest), em que € usado
um Random Forest para cada estado, gerando um classificador binario para cada
uma das classes, em que depois € computado a importancia de Gini para essas.
Uma vez os dados invertidos e normalizados estes ja podem ser usados como
entrada para o modelo, que também foi implementado usando a biblioteca

Scikit-learn (https://scikit-learn.org/stable/index.html),
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3.RESULTADOS E DISCUSSAO

3.1 MLP

Ao final da selegdo dos pares com pelo menos 15 A° em pelo menos um
frame e do bootstrap, obteve-se 5 perfis com 1828, 1907, 1925, 1909 e 1934 pares,
respectivamente. Todos com 40 mil frames. Entdo cada perfil foi usado para o
treinamento dos dois tipos de redes, o que resultou em 10 redes com acuracia de
100% e perdas menores que 0.01, como pode-se observar no Quadro 1 e 2. Demais
métricas presentes no reporte de classificagdo (do inglés Classification Report)
podem ser observadas em apéndices 1 e 2.

Quadro 1 - Acuracia e Perda dos MLPs com cinco camadas de 100 neurdnios.

Perfil (Pares por Frame) Acuracia Perda
1828 x 40 mil 1.00 0.0011
1907 x 40 mil 1.00 0.0028
1925 x 40 mil 1.00 0.0005
1909 x 40 mil 1.00 0.0008
1934 x 40 mil 1.00 0.0027

Fonte: Elaborado pelo autor

Quadro 2 - Acuracia e Perda dos MLPs com oito camadas com distribuicdo decrescente de

neurdnios.

Perfil (Pares por Frame) Acurécia Perda
1828 x 40 mil 1.00 0.0022
1907 x 40 mil 1.00 0.0014
1925 x 40 mil 1.00 0.0036
1909 x 40 mil 1.00 0.0008
1934 x 40 mil 1.00 0.0017

Fonte: Elaborado pelo autor

Dado essas métricas, de acuracia alta e perda muito pequena das redes, é
provavel que tenha ocorrido overfitting, ou seja, ao invés de aprender com os dados

os algoritmos se ajustaram a esses. Logo, é necessario mais testes, fazendo o uso
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de diferentes parametros, para encontrar os mais adequados para esses algoritmos.
Posto isso, ainda assim é interessante avaliar os pares de residuos indicados ao
final por esse métodos.

Nos quadros 3 e 4 pode-se observar os 5 pares mais importantes para a
classificagdo de cada complexo, resultante do LRP-0 para as redes. Nos apéndices
de 4 a 7 pode-se observar os graficos de relevancia para a rede com cinco

camadas, e em apéndices 8 a 11 os graficos da rede com oito camadas.

Quadro 3 - Pares as maiores relevancia para cada complexo, resultado LRP-0 para rede com

cinco camadas de cem neurdnios.

Complexos Pares (ACE2, SPIKE) e Importancia

(SER106, ASN487) = 8.991
(GLU22, SER477) = 7.337
ACE2-SPIKE(Selvagem) (SER19, GLY485) = 6.243
(ASN338, GLN498) = 5.638
(SER19, ASP467) = 5.390

(LEU45, ASN450) = 4.736
(THR324, GLU406) = 4.588
ACE2-SPIKE(Delta) (LEU391, LYS417) = 4.210
(GLN42, SER443) = 4.022
(LYS31, SER494) = 3.886

(GLU312, GLY504) = 1.142
(PHE72, TYR501) = 1.092
ACE2-SPIKE(Omicron) (GLY352, TYR451) = 1.002
(GLN325, GLY447) = 0.950
(GLU329, SER438) = 0.874

(SER19, ASN477) = 1.298
(SER19, PRO479) = 0.908
ACE2-SPIKE(P2) (SER105, TYR489) = 0.781
(ANS338, THR500) = 0.640
(SER106, PHE486) = 0.595

Fonte: Elaborado pelo proprio autor.
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Quadro 4 - Pares as maiores relevancia para cada complexo, resultado LRP-0 para rede com

oito camadas com distribuicdo decrescente de neurbnios..

Complexos Pares (ACE2, SPIKE) e Importancia

(SER106, GLY485) = 4.777
(VAL107, PHE486) = 4.745
ACE2-SPIKE(Selvagem) (GLN89, SER477) = 4.663
(SER19, PRO479) = 3.608
(ALA71, GLU484) = 2.778

(ASP30, GLU484) = 3.583
(GLN24, LYS417) = 1.667
ACE2-SPIKE(Delta) (GLY352, ARG408) = 1.467
(ALABS, SER443) = 1.111
(ASN33, GLN498) = 0.965

(GLU329, SER438) = 2.434
(GLN42, SER349) = 2.094
ACE2-SPIKE(Omicron) (TYR381, GLY502) = 1.759
(GLY352, ASN448) = 1.656
(GLY354, GLY504) = 1.501

(PRO321, ARG403) = 6.209
(SER19, ASN477) = 5.333
ACE2-SPIKE(P2) (SER19, PRO479) = 4.838
(GLN325, SER371) = 4.581
(GLU37, THR415) = 4.220

Fonte: Elaborado pelo proprio autor.

Vale de nota que a mudanca nos parametros, neste caso a mudanca no
numero de camadas, resultou na mesma acuracia e valores de perda semelhantes,
mas em um diferente conjunto de pares considerados os mais relevantes para a
classificagdo dos complexos. Isso €& decorrente da diferenca do numero e
distribuicao de neurdnios, visto que isso afeta a quantidade e valores dos pesos, que
implicam em valores de neurdnios diferentes e, portanto, em um resultado do LRP-0
diferente.

Analisando os pares indicados nota-se a presenca dos residuos GLN24,
GLN42, LEU45, GLN325, GLU329 e GLY354, localizados na proteina ACE2, que

sdo considerados residuos chave na interagdo com a proteina S (SURYAMOHAN et
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al., 2021). Além desses, um dos residuos-chave da ACE2 que apareceu mais de
uma vez dentre os pares é o SER19, inclusive mutagéo nesse residuo (S19P) foi
identificado como sendo um dos polimorfismos que aumentam a interagao proteina
ACEZ2/S, o que difere dos residuos ASN33 , PHE72 e GLY352 cujas mutagdes N33,
F72V e G352V respectivamente, diminuem tal interacdo (SURYAMOHAN et al.,
2021).

Ademais, outros residuos-chave que apareceram nos pares sao: o residuo
ASP30, que faz ponte salina com o residuo LYS407 da S, mas aqui aparece como
par do residuo GLU484, sendo necessaria uma investigagédo estrutural; o residuo
LYS31, em que a mutacido K31R é prevista como sendo uma das mutagdes que
reduzem a interagdo com a proteina S; e o residuo GLU37, que coordena contatos
polares como os residuos TYR505 e GLY502 do RBD da S (SURYAMOHAN et al.,
2021), contudo aqui faz par com o residuo THR415, enquanto o residuo GLY502 faz
com o TYR381 da ACE2.

Quanto aos residuos da proteina Spike, aparecem nos pares os residuos
criticos PHE486, SER494 e TYR501 para interagcédo com a ACE2, sendo que ultimo
a mutagdo N501Y, que esta presente em multiplas VOCs, e garante uma maior
afinidade de ligacdo com a ACE2 dado interacdo mais forte com seus residuos
TYR41 e LYS353 (SINGH et al., 2021), entretanto nesses resultados aparece em par
com o residuo PHE72.

No que se refere ao residuo LYS417, a mutacdo K417N aumenta a
transmissibilidade do virus, enquanto a mutacdo no residuo SER477 (S477N)
aumenta afinidade de ligagdo e no residuo GLU484 a mutagcdo E484K esta
associado a resisténcia a anticorpos (SINGH et al., 2021). Ha também os residuos
SER371 e GLN498, em que suas respectivas mutacdes S371L e Q498R estéo
associadas a uma maior afinidade de ligacdo entre a variante Omicron e a proteina
ACE2 (ARAF et al., 2022 ).

Essa diferenca na formagao de pares pode indicar que selecionar apenas os
pares que em um dos frames tenha distadncia menor que 15 A seja um parametro
abrangente, tendo em vista que os complexos se movem ao longo da trajetéria e por
um breve periodo podem estar proximos o suficiente para ter tal distancia. Desta
maneira, € necessario que os pares sejam visualizados na estrutura do complexo

para melhor compreensao.
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3.2RF

Para o Random Forest foram usados 3201 pares, também com 40 mil frames,
que, como foi usado o bootstrap implementado neste classificador, foi dividido em
amostras para o treinamento das cem arvores de decisdo que integraram esse
modelo. E como o um-contra-todos foi usado, obteve-se ao final 4 classificadores
Random Forest, um para cada classe, em que obteve-se uma acuracia de 100%, o
que também indica overfitting. O Classification Report pode ser observado em
apéndice 3.

No quadro 5 pode-se observar os cinco pares mais importantes pelo Random
Forest, sendo resultado da importancia de Gini dos classificadores. Nos apéndices 5
a 8 tem-se o grafico para cada complexo.

Quanto a importancia dada pela impureza de Gini no Random Forest, os
pares sado formados por alguns dos residuos ja mencionados no MLP, mas também
pelos residuos da Spike TYR505, cuja mutagcdo pode aumentar a transmisséo
(SINGH et al., 2021). Pelo residuo ARG498, que é uma das mutagdes presentes na
variante Omicron. responsavel pela maior afinidade desta com a proteina ACE2
(ARAF et al., 2022). Em relagédo a ACEZ2, o residuo SER19 foi recorrente entre os
pares, esse sendo um residuo-chave, assim como os residuos LYS353 e THR27,

que também apareceram entre os pares (SURYAMOHAN et al., 2021).



Quadro 5 - Pares com maior importancia de Gini

23

Complexos

Pares (ACE2, SPIKE) e Importancia

ACE2-SPIKE(Selvagem)

(SER19, VAL483) = 0.027
(SER19, CYS488) = 0.026
(SER19, CYS480) = 0.016
(SER44, TYR505) = 0.0143
(SER19, GLN474) = 0.0143

ACE2-SPIKE(Delta)

(ALA36, ASN501) = 0.021
(GLY66, ASN501) = 0.020
(ALA342, THR500) = 0.019
(ASN103, TYR505) = 0.015
(LYS68, ASN501) = 0.013

ACE2-SPIKE(Omicron)

(ALA25, ASN417) = 0.031
(GLN24, ASN417) = 0.031
(ILE21, ASN417) = 0.031
(LYS353, ARG498) = 0.029
(THR27, ASN417) = 0.028

ACE2-SPIKE(P2)

(SER106, LYS484) = 0.256
(SER19, CYS480) = 0.023
(SER105, ASN487) = 0.022
(GLY104, ASN487) = 0.020
(SER105, LYS484) = 0.020

Fonte: Elaborado pelo proprio autor.



24

5.CONCLUSAO

Mediante ao exposto ao longo desse trabalho, pode-se concluir que as
técnicas de aprendizado de maquina apresentadas, MLP e RF, e seus respectivos
métodos de extracdo de caracteristicas LRP-0 e Importancia de Gini, possuem
capacidade de apresentar resultados interessantes quanto a residuos e pares dos
complexos abordado. Contudo, ainda é necessario mais testes em relacdo aos
parametros de ambos modelos, a fim de adequa-los para que nao ocorra o
overfitting. Além disso, vale ressaltar que, uma vez ajustado os parametros e
obtencédo dos valores adequados, faz-se necessario também a analise na estrutura
dos pares indicados como os mais importantes para classificacdo, o que pode levar

a insights quanto ao impacto dessas na interagdo do complexo ACE2/S.



25
REFERENCIAS

ARAF, Yusha; AKTER, Fariya; TANG, Yan dong; et al. Omicron variant of
SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19
vaccines. Journal of Medical Virology, v. 94, n. 5, p. 1825-1832, 2022. Disponivel
em: <https://pubmed.ncbi.nim.nih.gov/35023191/>. Acesso em: 7 abr. 2022.

CHOUDHARY, Sarita; SREENIVASULU, Karli; MITRA, Prasenijit; et al. Role of
genetic variants and gene expression in the susceptibility and severity of COVID-19.
Annals of Laboratory Medicine, v. 41, n. 2, p. 129-138, 2020. Disponivel em:
</pmc/articles/PMC7591285/>. Acesso em: 9 abr. 2022.

FLEETWOOD, Oliver; KASIMOVA, Marina A.; WESTERLUND, Annie M.; et al.
Molecular Insights from Conformational Ensembles via Machine Learning.
Biophysical Journal, v. 118, n. 3, p. 765-780, 2020. Disponivel em:
</pmc/articles/PMC7002924/>. Acesso em: 9 abr. 2022.

GLOROT, Xavier; BORDES, Antoine; BENGIO, Yoshua. Deep sparse rectifier neural
networks. In: Journal of Machine Learning Research. [s.l.: s.n.], 2011, v. 15, p.
315-323.

HOLLINGSWORTH, Scott A.; DROR, Ron O. Molecular Dynamics Simulation for All.
Neuron, v. 99, n. 6, p. 1129-1143, 2018.

HUANG, Yuan; YANG, Chan; XU, Xin feng; et al. Structural and functional properties
of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19.
Acta Pharmacologica Sinica, v. 41, n. 9, p. 1141-1149, 2020. Disponivel em:
<https://www.nature.com/articles/s41401-020-0485-4>. Acesso em: 1 dez. 2022.

KINGMA, Diederik P.; BA, Jimmy Lei. Adam: A method for stochastic optimization. In:
3rd International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings. [s.l.]: International Conference on Learning Representations,
ICLR, 2015. Disponivel em: <https://arxiv.org/abs/1412.6980v9>. Acesso em: 8 dez.
2022.

MCGIBBON, Robert T.; BEAUCHAMP, Kyle A.; HARRIGAN, Matthew P.; et al.
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
Biophysical Journal, v. 109, n. 8, p. 1528-1532, 2015.

MOHAMMADI, Mehrdad; SHAYESTEHPOUR, Mohammad; MIRZAEI, Hamed. The
impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and
Lambda] on the efficacy of subunit recombinant vaccines. Brazilian Journal of
Infectious Diseases, v. 25, n. 4, p. 101606, 2021. Disponivel em:
</pmc/articles/PMC8367756/>. Acesso em: 9 abr. 2022.

MONTAVON, Grégoire; BINDER, Alexander; LAPUSCHKIN, Sebastian; et al.
Layer-Wise Relevance Propagation: An Overview. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). [s.l.: s.n.], 2019, v. 11700 LNCS, p. 193-209.



26

PENG, Ruchao; WU, Lian Ao; WANG, Qingling; et al. Cell entry by SARS-CoV-2.
Trends in Biochemical Sciences, v. 46, n. 10, p. 848-860, 2021. Disponivel em:
<https://doi.org/10.1016/j.tibs.2021.06.001>. Acesso em: 2 set. 2021.

PRAJAPAT, Manisha; SARMA, Phulen; SHEKHAR, Nishant; et al. Update on the
target structures of SARS-CoV-2: A systematic review. Indian Journal of
Pharmacology, v. 52, n. 2, p. 142-149, 2020. Disponivel em:
</pmc/articles/PMC7282679/>. Acesso em: 9 abr. 2022.

SINGH, Jalen; PANDIT, Pranav; MCARTHUR, Andrew G.; et al. Evolutionary
trajectory of SARS-CoV-2 and emerging variants. Virology Journal, v. 18, n. 1, p. 166,
2021. Disponivel em: </pmc/articles/PMC8361246/>. Acesso em: 3 set. 2021.

SURYAMOHAN, Kushal; DIWANJI, Devan; STAWISKI, Eric W.; et al. Human ACE2
receptor polymorphisms and altered susceptibility to SARS-CoV-2. Communications
Biology, v. 4, n. 1, p. 1-11, 2021. Disponivel em:
<https://www.nature.com/articles/s42003-021-02030-3>. Acesso em: 9 abr. 2022.

WHO. Tracking SARS-CoV-2 variants. Who. Disponivel em:
<https://www.who.int/activities/tracking-SARS-CoV-2-variants>. Acesso em: 3 dez.
2022.

WHO DIRECTOR GENERAL'S SPEECHES. WHO Director-General’s opening
remarks at the media briefing on COVID-19 - 11 March 2020. WHO Director
General’s speeches, n. March, p. 4, 2020. Disponivel em:
<https://www.who.int/director-general/speeches/detail/who-director-general-s-openin
g-remarks-at-the-media-briefing-on-covid-19---11-march-2020>. Acesso em: 28 nov.
2022.

WORLD HEALTH ORGANIZATION. WHO Coronavirus Disease (COVID-19)
Dashboard With Vaccination Data | WHO Coronavirus (COVID-19) Dashboard With
Vaccination Data. World Health Organization, p. 1-5, 2021. Disponivel em:
<https://covid19.who.int/>. Acesso em: 12 dez. 2022.

ZEPEDA-CERVANTES, Jesus; MARTINEZ-FLORES, Daniel; RAMIREZ-JARQUIN,
Josué Orlando; et al. Implications of the Immune Polymorphisms of the Host and the
Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses, v. 14,
n. 1, 2022. Disponivel em: </pmc/articles/PMC8778858/>. Acesso em: 9 abr. 2022.



27

APENDICE
Apéndice 1 - Classification Report MLP com cinco camadas de cem neurdnios.
Perfil Classification Report

1828 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003
ACE2-SPIKE (WT) 1.00 1.00 1.00 2018
ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000
ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980
accuracy 1.00 8001
macro avg 1.00 1.00 1.00 8001
weighted avg 1.00 1.00 1.00 8001

Perda: 0.0011579129333462378
1907 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003
ACE2-SPIKE (WT) 1.00 1.00 1.00 2018
ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000
ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980
accuracy 1.00 8001
macro avg 1.00 1.00 1.00 8001
weighted avg 1.00 1.00 1.00 8001

Perda: 0.0028196864327025587
1925 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003
ACE2-SPIKE (WT) 1.00 1.00 1.00 2018
ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000
ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980
accuracy 1.00 8001
macro avg 1.00 1.00 1.00 8001
weighted avg 1.00 1.00 1.00 8001

Perda: 0.000468362446264934

1909 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003
ACE2-SPIKE (WT) 1.00 1.00 1.00 2018
ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000
ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980
accuracy 1.00 8001
macro avg 1.00 1.00 1.00 8001
weighted avg 1.00 1.00 1.00 8001

Perda: 0.0007678636780219338
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1934 x 40 mil

ACE2-SPIKE (P2)
ACE2-SPIKE (WT)
ACE2-SPIKE (deltal)
ACE2-SPIKE (omicronl)

accuracy

macro avg
weighted avg

Perda:

precision recall
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00

0.0027129004542402733

fl-score

e

=

.00
.00
.00
.00

.00
.00
.00

support

2003
2018
2000
1980

8001
8001
8001

Fonte: Elaborado pelo autor.

Apéndice 2 - Classification Report MLP com distribuicdo decrescente de neurbnios em oito

camadas.
Perfil Classification Report

1828 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003

ACE2-SPIKE (WT) 1.00 1.00 1.00 2018

ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000

ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980

accuracy 1.00 8001

macro avg 1.00 1.00 1.00 8001

weighted avg 1.00 1.00 1.00 8001

Perda: 0.0021944622069453297

1907 x 40 mil precision recall fl-score support
ACEZ—SPIKE( 2) 1.00 1.00 1.00 2003

ACE2-SPIKE (WT) 1.00 1.00 1.00 2018

ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000

ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980

accuracy 1.00 8001

macro avg 1.00 1.00 1.00 8001

weighted avg 1.00 1.00 1.00 8001

Perda: 0.001368776453017395

1925 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003

ACE2-SPIKE (WT) 1.00 1.00 1.00 2018

ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000

ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980

accuracy 1.00 8001
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macro avg 1.00 1.00 1.00 8001
weighted avg 1.00 1.00 1.00 8001

Perda: 0.003572032391250793
1909 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003
ACE2-SPIKE (WT) 1.00 1.00 1.00 2018
ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000
ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980
accuracy 1.00 8001
macro avg 1.00 1.00 1.00 8001
weighted avg 1.00 1.00 1.00 8001

Perda: 0.0008118542414011292
1934 x 40 mil precision recall fl-score support
ACE2-SPIKE (P2) 1.00 1.00 1.00 2003
ACE2-SPIKE (WT) 1.00 1.00 1.00 2018
ACE2-SPIKE (deltal) 1.00 1.00 1.00 2000
ACE2-SPIKE (omicronl) 1.00 1.00 1.00 1980
accuracy 1.00 8001
macro avg 1.00 1.00 1.00 8001
weighted avg 1.00 1.00 1.00 8001

Perda: 0.0017346427187478351

Fonte: Elaborado pelo autor.

Apéndice 3 - Classification Report do Random Forest

ACE2-SPIKE (P2
ACE2-SPIKE (WT
ACE2-SPIKE (deltal
ACE2-SPIKE (omicronl

—_— — — —

accuracy
macro avg
weighted avg

precision recall fl-score
1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00

1.00 1.00 1.00

1.00 1.00 1.00

support

2003
2018
2000
1980

8001
8001
8001

Fonte: Elaborado pelo autor.
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Apéndice 4 - Grafico dos resultados do LRP-0 da rede com cinco camadas para o complexo
ACE2-SPIKE(Selvagem)

Importéncia dos pares para o complexo ACE2-SPIKE(Selvagem)
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Fonte: Elaborado pelo autor.

Apéndice 5 - Grafico dos resultados do LRP-0 da rede com cinco camadas para o complexo
ACE2-SPIKE(Delta)

Importéncia dos pares para o complexo ACE2-SPIKE(Delta)
[LEU45 ';\SN450']
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L
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[GLN42' 'SER443] 1
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Fonte: Elaborado pelo autor.
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Apéndice 6 - Grafico dos resultados do LRP-0 da rede com cinco camadas para o complexo
ACE2-SPIKE(Omicron)

Importancia dos pares para o complexo ACE2-SPIKE(Omicron)
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Fonte: Elaborado pelo autor.

Apéndice 7 - Grafico dos resultados do LRP-0 da rede com cinco camadas para o complexo
ACE2-SPIKE(P2)

Importéncia dos pares para o complexo ACE2-SPIKE(P2)
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Fonte: Elaborado pelo autor.
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Apéndice 8 - Grafico dos resultados do LRP-0 da rede com distribuicdo decrescente de

neurdnios em oito camadas para o complexo ACE2-SPIKE(Selvagem)

Importéancia dos pares para o complexo ACE2-SPIKE(Selvagem)
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Fonte: Elaborado pelo autor.

Apéndice 9 - Grafico dos resultados do LRP-0 da rede com distribuicdo decrescente de

neurdnios em oito camadas para o complexo ACE2-SPIKE(Delta)

Importéncia dos pares para o complexo ACE2-SPIKE(Delta)
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Fonte: Elaborado pelo autor.
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Apéndice 10 - Grafico dos resultados do LRP-0 da rede com distribuicdo decrescente de

neurdnios em oito camadas para o complexo ACE2-SPIKE(Omicron)

Importéncia dos pares para o complexo ACE2-SPIKE(Omicron)
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Fonte: Elaborado pelo autor.

Apéndice 11 - Grafico dos resultados do LRP-0 da rede com distribuicdo decrescente de

neurdnios em oito camadas para o complexo ACE2-SPIKE(P2).

Importéancia dos pares para o complexo ACE2-SPIKE(P2)
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Fonte: Elaborado pelo autor.



Apéndice 12 - Grafico dos resultados da Importancia de Gini do Random Forest para o
complexo ACE2-SPIKE(Selvagem).

Importéncia dos pares para o complexo ACE2-SPIKE(Selvagem)
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Fonte: Elaborado pelo autor.
Apéndice 13 - Gréfico dos resultados da Importancia de Gini do Random Forest para o
complexo ACE2-SPIKE(Delta).
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Fonte: Elaborado pelo autor.




Apéndice 14 - Grafico dos resultados da Importancia de Gini do Random Forest para o
complexo ACE2-SPIKE(Omicron).

Importancia dos pares para o complexo ACE2-SPIKE(Omicron)

A
malihazs ,
0.030 o A@%{;}éﬁﬁ?}ﬁ o [1¥s355.,
[T, AReage,
7 "ASN,,V]
0.025

=3
o
~
o

Importéncia de Gini
o
o
2
w

0.010 4

0.005 4

0.0004 |l , | “\ UL b A IRIER I JJ.|| 1k . 1
~\‘ ‘\‘ ~\‘ »‘\‘ ~‘\‘ ~\‘ »‘\‘ ~\‘ \I ~‘\‘ ’\‘ \\I ~’\‘ N ~\I '\‘ *‘\‘ -\I »\‘ ~'\‘ \\‘ ~\‘ ~\‘ ~\.I ~\‘ *\‘ ~\I ~'\‘ ~\‘ ~\.I ~‘\‘ ~'\I »‘\‘
B A A A I S R R B A e TN S B T e R R A AR A P R R SR ]

Q.bQ.VQV$°QVQ.°74“Qb‘Q.VehgQf’qb‘(,b‘(yb‘gb‘c;b %D‘Qhw\b(‘\"fo(y\‘?*b'\)b'(av@\?%b@é’

R T P T IEIFLFELTEITT O FFTF I FINFLETFTLSS

I N T T e e S T T R ST WS o SN e R R R
eﬁé‘o&woy«*&‘ywxﬁ%‘&&@&\e&%o\&‘\5‘9 (‘Q}‘\f‘? ¥ o @S\ «*@é&?& & «9&%‘} %“W«,&%@*-k"g’eé) Q:’%\?"’ Q-o”;b P
NN NG N N S S SR LN A NI L I R

Pares
Fonte: Elaborado pelo autor.
Apéndice 15 - Grafico dos resultados da Importancia de Gini do Random Forest para o
complexo ACE2-SPIKE(P2).
Importéncia dos pares para o complexo ACE2-SPIKE(P2)
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Observagao: os pares que se sobrepdem séo (GLY 104, ASN487) e (SER105, LYS484).

Fonte: Elaborado pelo autor.





